APPROXIMATE HEDGING OF OPTIONS UNDER JUMP-DIFFUSION PROCESSES
نویسندگان
چکیده
منابع مشابه
Hedging of Options in Jump-Diffusion Markets with Correlated Assets
We consider the hedging problem in a jump-diffusion market with correlated assets. For this purpose, we employ the locally risk-minimizing approach and obtain the hedging portfolio as a solution of a multidimensional system of linear equations. This system shows that in a continuous market, independence and correlation assumptions of assets lead to the same locally risk-minimizing portfolio. ...
متن کاملA Computational Scheme for Options under Jump Diffusion Processes
In this paper we develop two novel numerical methods for the partial integral differential equation arising from the valuation of an option whose underlying asset is governed by a jump diffusion process. These methods are based on a fitted finite volume method for the spatial discretization, an implicit-explicit time stepping scheme and the Crank-Nicolson time stepping method. We show that the ...
متن کاملApproximate Basket Options Valuation for a Jump-Diffusion Model
In this paper we discuss the approximate basket options valuation for a jump-diffusion model. The underlying asset prices follow some correlated diffusion processes with idiosyncratic and systematic jumps. We suggest a new approximate pricing formula which is the weighted sum of Roger and Shi’s lower bound and the conditional second moment adjustments. We show the approximate value is always wi...
متن کاملDynamic Hedging Under Jump Diffusion with Transaction Costs
If the price of an asset follows a jump diffusion process, the market is in general incomplete. In this case, hedging a contingent claim written on the asset is not a trivial matter, and other instruments besides the underlying must be used to hedge in order to provide adequate protection against jump risk. We devise a dynamic hedging strategy that uses a hedge portfolio consisting of the under...
متن کاملA penalty method for American options with jump diffusion processes
The fair price for an American option where the underlying asset follows a jump diffusion process can be formulated as a partial integral differential linear complementarity problem. We develop an implicit discretization method for pricing such American options. The jump diffusion correlation integral term is computed using an iterative method coupled with an FFT while the American constraint i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Theoretical and Applied Finance
سال: 2015
ISSN: 0219-0249,1793-6322
DOI: 10.1142/s0219024915500247